Nanoanalysis of Electrochemical Processes


Understanding the mechanisms that alter nanostructures during electrochemical processes is crucial to develop electrolyzer and fuel cell technology. With this knowledge it is possible to enhance efficiency, resilience, and durability of the devices. Scaling those up allows to efficiently use hydrogen technology to store renewable energy.

To do so, we employ scale-bridging, correlative analysis methods covering full-stack analysis, in situ degradation studies, modeling, and operando liquid phase electron microscopy.

Research Topics

To investigate the processes related to formation and alteration of the nanostructures involved, we combine a toolbox of methods that include

  • synthesis of new catalytic materials
  • development of accelerated stress test protocols
  • characterization in half and full cell tests
  • nanostructural analysis methods via operando electron microscopy
  • electro-structural and kinetic electrochemical simulations
  • electron beam-induced effects in liquid phase electron microscopy
  • quantitative liquid phase electron microscopy


Dr.-Ing. Andreas Hutzler


Building HIERN-Cauerstr / Room 4009

+49 9131-12538174

Transmission Electron Microscopy Lab
H2Giga - StacIE: Stack Scale-Up: Industrialization PEM Electrolysis
Electronic devices based on the 2D material black phosphorus - layer-dependent properties


Nanoanalysis of Electrochemical Processes
Nanoanalysis of Electrochemical Processes
Publications with contributions from our team
  • T. Couasnon, B. Fritsch, M. P. M. Jank, R. Blukis, A. Shreiber, A. Hutzler, L. G. Benning, Goethite Mineral Dissolution to Probe Radiolytic Water Chemistry in Liquid-Phase Electron Microscopy, Advanced Science 10 (ASAP), accepted, 2023, DOI: 10.1002/advs.202301904
  • S. Auffarth, M. Wagner, B. Fritsch, A. Hutzler, T. Böhm, L. Hager, S. Thiele, J. Kerres, Nanophase-Separated Block-co-Polymers Based on Phosphonated Pentafluorostyrene and Octylstyrene for Proton-Exchange Membranes, ACS Materials Letters 5 (ASAP), 2023, pp. 2039 - 2046, DOI: 10.1021/acsmaterialslett.3c00569
  • J. Schwarz, M. Niebauer (equal contribution), M. Kolesnik-Gray, M. Szabo, P. Chava, L. Baier, J. Schulze, A. Erbe, V. Krstic, M. Rommel, A. Hutzler, Correlating 4x4 Transfer Matrix Modeling with Optical Microspectroscopy for Layer Counting of Anisotropic 2D Materials, Small Methods 7 (ASAP), accepted, 2023, DOI: 10.1002/smtd.202300618
  • M. Milosevic, T. Böhm, A, Körner, M. Bierling, L. Winkelmann, K. Ehelebe, A. Hutzler, M. Suermann, S. Thiele, S. Cherevko, In Search of Lost Iridium: Quantification of Anode Catalyst Layer Dissolution in Proton Exchange Membrane Water Electrolyzers, ACS Energy Letters 8 (6), 2023, pp. 2682 - 2688, DOI: 10.1021/acsenergylett.3c00193
  • B. Fritsch, A. Körner (equal contribution), T. Couasnon, R. Blukis, M. Taherkhani, M. P. M. Jank, L. G. Benning, E. Spiecker, A. Hutzler, Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation Beyond pH, Journal of Physical Chemistry Letters 14 (20), 2023, pp. 4644 - 4651, DOI: 10.1021/acs.jpclett.3c00593
  • M. Koleśnik-Gray, L. Meingast, M. Siebert, T. Unbehaun, T. Huf, G. Ellrott, G. Abellan-Saez, S.Wild, V. Lloret, U. Mundloch, J. Schwarz, M. Niebauer, M. Szabo, M. Rommel, A. Hutzler, F. Hauke, A. Hirsch, V. Krstić, Unconventional conductivity increase in multilayer black phosphorus, npj 2D Materials and Applications 7, 2023, Art. No. 21, DOI: 10.1038/s41699-023-00384-2
  • M. Minichová, C. Van Pham, B. Xiao, A. Savan, A. Hutzler, A. Körner, I. Khalakhan, M. Gamón Rodríguez, I. Mangoufis-Giasin, V. Briega-Martos, A. Kormányos, I. Katsounaros, Karl J. J. Mayrhofer, A. Ludwig, S. Thiele, S. Cherevko, Isopropanol Electro-oxidation on Pt-Ru-Ir: A Journey from Model Thin Film Libraries towards Real Electrocatalysts, Electrochimica Acta 444, 2023, Art. No. 142032, DOI: 10.1016/j.electacta.2023.142032
  • S. Ruck, A. Körner, A. Hutzler, M. Bierling, J. Gonzalez, W. Qu, C. Bock, S. Thiele, R. Peach, C. Van Pham, Carbon supported NiRu alloy nanoparticles as an effective cathodic catalyst in anion exchange membrane water electrolyzers, Journal of Physics: Energy 4 (4), 2022, Art. No. 044007, DOI: 10.1088/2515-7655/ac95cd
  • B. Fritsch, T. S. Zech, M. P. Bruns, S. Khadivianazar, N. Zargar Talebi, A. Körner, M. Wu, S. Virtanen, T. Unruh, M. P. M. Jank, E. Spiecker, A. Hutzler, Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging in situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction, Advanced Science 9 (25), 2022, Art. No. 2202803, DOI: 10.1002/advs.202202803
  • R. Stöber, F. Mai, O. Sebastian, A. Körner, A. Hutzler, P. Schühle, A highly stable bimetallic transition metal phosphide catalyst for selective dehydrogenation of n-heptane, ChemCatChem 14, 2022, Art. No. e202200371, DOI: 10.1002/cctc.202200371
  • Y.-P. Ku, K. Ehelebe, A. Hutzler, M. Bierling, T. Böhm, A. Zitolo, M. Vorokhta, N. Bibent, F. D. Speck, D. Seeberger, I. Khalakhan, K. J. J. Mayrhofer, S. Thiele, F. Jaouen, S. Cherevko, Oxygen Reduction Reaction in Alkaline Media Causes Iron Leaching from Fe-N-C Electrocatalysts, Journal of the American Chemical Society 144 (22), 2022, pp. 9753 - 9763, DOI: 10.1021/jacs.2c02088
  • B. Fritsch, M. Wu, A. Hutzler, D. Zhou, R. Spruit, L. Vogl, J. Will, R. H. H. Pérez Garza, M. März, M. P. M. Jank, E. Spiecker, Sub-Kelvin thermometry for evaluating the local temperature stability within in situ TEM gas cells, Ultramicroscopy 235, 2022, Art. No. 113494, DOI: 10.1016/j.ultramic.2022.113494
  • B. Fritsch, A. Hutzler (equal contribution), M. Wu, S. Khadivianazar, L. Vogl, M. P. M. Jank, M. März, E. Spiecker, Accessing local electron-beam-induced temperature changes during in situ liquid-phase transmission electron microscopy, Nanoscale Advances 3 (9), 2021, pp. 2466 - 2474 , DOI: 10.1039/D0NA01027H
Projects in our team

Last Modified: 29.06.2023